Connectivity Learning in Multi-Branch Networks
نویسندگان
چکیده
While much of the work in the design of convolutional networks over the last five years has revolved around the empirical investigation of the importance of depth, filter sizes, and number of feature channels, recent studies have shown that branching, i.e., splitting the computation along parallel but distinct threads and then aggregating their outputs, represents a new promising dimension for significant improvements in performance. To combat the complexity of design choices in multi-branch architectures, prior work has adopted simple strategies, such as a fixed branching factor, the same input being fed to all parallel branches, and an additive combination of the outputs produced by all branches at aggregation points. In this work we remove these predefined choices and propose an algorithm to learn the connections between branches in the network. Instead of being chosen a priori by the human designer, the multi-branch connectivity is learned simultaneously with the weights of the network by optimizing a single loss function defined with respect to the end task. We demonstrate our approach on the problem of multi-class image classification using four different datasets where it yields consistently higher accuracy compared to the state-of-the-art “ResNeXt” multi-branch network given the same learning capacity.
منابع مشابه
Representing a Model for Improving Connectivity and Power Dissipation in Wireless Networks Using Mobile Sensors
Wireless sensor networks are often located in areas where access to them is difficult or dangerous. Today, in wireless sensor networks, cluster-based routing protocols by dividing sensor nodes into distinct clusters and selecting local head-clusters to combine and send information of each cluster to the base station and balanced energy consumption by network nodes, get the best performance ...
متن کاملRepresenting a Model for Improving Connectivity and Power Dissipation in Wireless Networks Using Mobile Sensors
Wireless sensor networks are often located in areas where access to them is difficult or dangerous. Today, in wireless sensor networks, cluster-based routing protocols by dividing sensor nodes into distinct clusters and selecting local head-clusters to combine and send information of each cluster to the base station and balanced energy consumption by network nodes, get the best performance ...
متن کاملDetection of schizophrenia patients using convolutional neural networks from brain effective connectivity maps of electroencephalogram signals
Background: Schizophrenia is a mental disorder that severely affects the perception and relations of individuals. Nowadays, this disease is diagnosed by psychiatrists based on psychiatric tests, which is highly dependent on their experience and knowledge. This study aimed to design a fully automated framework for the diagnosis of schizophrenia from electroencephalogram signals using advanced de...
متن کاملA New Method based on Intelligent Water Drops for Multicast Routing in Wireless Mesh Networks
In recent years a new type of wireless networks named wireless mesh networks has drawn the attention of researchers. In order to increase the capacity of mesh network, nodes are equipped with multiple radios tuned on multiple channels emerging multi radio multi channel wireless mesh networks. Therefore, the main challenge of these networks is how to properly assign the channels to the radios. O...
متن کاملA Survey on Multicast Routing Approaches in Wireless Mesh Networks
Wireless mesh networks (WMNs) which mediates the broadband Internet access, have been recently received many attentions by the researchers. In order to increase capacity in these networks, nodes are equipped with multiple radios tuned on multiple channels emerging multi radio multi-channel WMNs (MRMC WMNs). Therefore, a vital challenge that poses in MRMC WMNs is how to properly assign channels ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.09582 شماره
صفحات -
تاریخ انتشار 2017